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Abstract— Quarantine is a natural concept borrowed from
human disease control to slow down worm outbreaks. We study
the effectiveness of partial quarantine for simple epidemics
(without removals) and find that the optimal quarantine strategy
is not as simple as expected. The strategy depends on which
networks are most important to protect. We also investigate the
effectiveness of quarantine for general epidemics (with removals)
and derive the critical threshold for networks to have herd
immunity. We show that, given a limited capability to quarantine
a given number of networks, the optimal quarantine strategy is
to isolate the networks small enough to have herd immunity, and
then divide the remaining networks as evenly as possible.

I. INTRODUCTION

Quarantine is a natural and widely practiced method of
human disease control. Since many diseases are transmitted
from infectious to susceptible individuals through social con-
tact, an epidemic can be curtailed by isolating the infectious
subpopulation. In practice, it may not not be possible to
isolate all the infectious individuals. Thus, the basic goal
of quarantine modeling is to to gain an understanding of
the effectiveness achieved by quarantining some subset of
infectious individuals [4].

The same concepts apply to quarantine of network worms
[16]. Worms are automated programs that take advantage
of network connectivity to spread from infected hosts to
vulnerable hosts. In theory, worm traffic can be blocked and
filtered by firewalls, intrusion prevention systems, and routers
with access control. Quarantining a subnetwork will prevent
infected hosts within the subnetwork from infecting vulnerable
hosts in other networks as well as prevent external hosts from
infecting internal vulnerable hosts.

Quarantine is only one defense among many and insuf-
ficient by itself. Other defenses are needed to fortify hosts
by removing vulnerabilities and cure infected hosts through
software patching and antivirus software. Quarantine serves
to slow down an outbreak to buy time for vulnerable hosts to
be fortified and infected hosts to be disinfected. In major worm
outbreaks in the past, the patching and cleanup activities were
employed when the worm epidemic had already progressed to
an advanced stage. Quarantine may slow down an epidemic
sufficiently to apply these defensive activities in the early
stages of the epidemic, thus minimizing the ultimate damage.

An alternative to quarantine is rate throttling, advocated by
Williamson and others [21]. Williamson postulated that normal
applications exhibit a stable contact rate (found to be less than
5 connections per sec.) to a limited number of external hosts

(servers). His virus throttling approach keeps an active set
of addresses for each host. Outbound connections to these
addresses are allowed, but other outbound connections are
delayed by putting them in a queue that is serviced at a rate of
1-2 per second. Thus connections to frequently contacted ad-
dresses are allowed but connections to random new addresses
are delayed. Wong et al. examined the effectiveness of rate
throttling performed at routers as well as hosts [22].

In practice, the effectiveness of quarantining will depend
on the time to detect a new worm outbreak and activate
quarantine. A worm can spread without constraint among the
vulnerable subpopulation before it is detected. It is critical
to minimize the time to detect a new worm outbreak. An
extensive amount of literature on intrusion detection addresses
the issue of automated worm detection [2], [5], [6], [8], [9],
[14], [17]–[19].

The effectiveness will also depend on the extent of deploy-
ment of filtering equipment within the network. Quarantining
will most likely be implemented at firewalls at network edges,
but not universally. This paper investigates the effectiveness
of partial quarantine and the question of optimal quarantine
strategies. Section 2 studies the impact of quarantine for simple
epidemics (without removals). Section 3 examines quarantine
for general epidemics (with removals). A central concept for
general epidemics is herd immunity. We derive a critical
threshold for quarantined networks to have herd immunity,
and examine the impact of herd immunity on the optimal
quarantine strategy.

II. QUARANTINE FOR SIMPLE EPIDEMICS

Research on worm quarantine strategies is still at an early
stage. Moore et al. examined a topology map of autonomous
systems in the Internet and compared deployment of content
filtering at large ISPs versus customer autonomous systems
[16]. It was concluded that a worm outbreak can be contained
to a minority of hosts if the top 20 ISPs can block the worm
traffic. In this paper, we seek more general results that are not
specific to a particular Internet topology.

Zou et al. investigated a “soft” quarantining scheme where
hosts suspected of being infected are quarantined temporarily
for some length of time (but could be re-quarantined) [24].
This was evaluated by the simple and general epidemic mod-
els.

Zou et al. proposed a “firewall network system” consisting
of internal firewalls for dividing an enterprise network into



isolated subnetworks [25]. The quarantining works with an
active patching system that aggressively identifies and patches
vulnerable hosts. The study focuses mostly on implementation
and architectural issues.

Liljenstam et al. compared quarantine with active patching
and “counter-worms” [13]. It was not clear why quarantine is
compared with patching, since they are complementary and
not opposing methods. It was concluded that quarantining
needs to be deployed very widely and act very quickly in
order to be effective. In this paper, we view quarantine as a
complementary method to patching. Quarantine serves to buy
time for systems to be patched and fortified.

A. Simple Epidemics

The “simple epidemic” or SI (susceptible → infective)
model assumes a homogeneous vulnerable population [1],
[7]. The population is considered to be a fixed number of
N hosts during the timeframe of interest. The population is
initially entirely susceptibles (i.e., vulnerable but not infected)
except for a small number of infectives. Through contacts with
infectives, susceptibles may become infective and then remain
infective permanently.

Let S(t) and I(t) denote the number of susceptibles and
infectives at time t, where S(t)+I(t) = N . By homogeneous
mixing, each susceptible is assumed to make an average
βN contacts per unit time but the probability of meeting a
susceptible each time is S/N . The parameter β is the pairwise
infection rate or infectious contact rate. Hence, the number of
infectives increases at a rate of

d

dt
I = (βN)(S/N)I = βIS = βI(N − I) (1)

Given the initial condition I(0) = I0, the solution is the
logistic curve

I(t) =
I0N

I0 + (N − I0)e−βNt
(2)

According to (2), an outbreak will reach an infection level pN
at time

Tp =
ln p(N − I0) − ln I0(1 − p)

βN
(3)

The SI model appears to be a good candidate for early
stages of random scanning worm epidemics. These worms
target pseudo-random IP addresses which seems to conform to
the assumption of homogeneous mixing. Moore et al. showed
that the logistic curve predicted by the SI model could fit the
observed data for the growth of the Code Red worm [15].
Liljenstam et al. fit the SI model to the initial spread of the
SQL Slammer worm [12]. Zou et al. agreed with the close fit
for the early stages of the Code Red outbreak but pointed out
a greater than predicted slowdown in the later stages [23]. The
discrepancy in the later stages was attributed to the fact that the
SI model did not account for network congestion and human
countermeasures (such as patching, filtering and isolation).

B. Effectiveness of Partial Quarantine

The effect of quarantine is to divide the population into
separate subpopulations which do not mix with each other.
Liljenstam et al. modeled the Internet as an interconnected set
of networks or autonomous systems [11]–[13]. Wagner et al.
also chose to model worm propagation through an Internet
structured as an interconnection of multiple subnetworks [20].
Worm quarantine prevents infections from spreading from one
network to another. However, if a quarantined network is
already infected, the epidemic will continue to spread within
that network even after the quarantine. Even so, the spread of
infection within the network is going to slow down signifi-
cantly after quarantine, because there will be no contribution
of infectious contacts from other networks.

For the moment, we assume that the population consists
of m networks which are all equal size N1 = · · · = Nm =
N/m (this assumption will be relaxed later). As a practical
matter, only a fraction P of networks will be able to be
quarantined. The unquarantined networks spread infections
between them without constraint, while quarantined networks
have spreading only within each network. We used parameter
values estimated by Liljenstam et al. for the SQL Slammer
worm: β = 5.6 × 10−5, N = 120, 000 [12]. For m = 100,
Fig. 1 shows the epidemic rates as a function of P . As might
be expected, larger values of P (more quarantined networks)
cause the epidemic to slow down more. In each case, there
is a very fast initial spread dependent on the number of
unquarantined networks that spread infections between them,
followed by a much slower spread contributed by the spread
of infections within the quarantined networks.

Fig. 2 shows the time to saturate a certain fraction of the
population as a function of P . The time to infect 95 percent of
the population is slowed very substantially even for small P .
However, it takes much more quarantining (larger P ) to have
a significant effect on the time to reach lower infection levels.
For example, it takes more than 75 percent quarantining to

Fig. 1. Epidemic rates as a function of P



Fig. 2. Effect of P on time to saturate a certain fraction of the population

have an effect in slowing down the time to infect 25 percent
of the population. The reason is that 75 percent quarantining
leaves 25 percent of the population unquarantined, and this 25
percent subpopulation will saturate quickly.

C. Strategies for Quarantine

We now relax the assumption of equal size households and
consider households of different sizes to investigate the ques-
tion of optimal quarantining strategy. It will not be practical to
quarantine every network because this would require worm-
blocking firewalls at the edge of every network. Suppose only
a given number of firewalls are capable of worm quarantine,
which networks should be quarantined? Our intuition for a
reasonable strategy is to quarantine the largest networks first,
which would leave the smallest subpopulation unquarantined.
However, the situation is not that simple.

We follow an inductive argument to examine this strategy.
We first consider one network to quarantine, then the second
network, and so on. The first quarantined network will separate
the population into two subpopulations. Let us suppose the
two subpopulations have sizes PN and (1 − P )N . That is,
the first network to quarantine represents a fraction P of the
population. The epidemics in the two subpopulations grow
independently.

Fig. 3 shows the total number of infected over time as a
function of P . For each value of P , there is an initial fast
epidemic growth due to the larger subpopulation, followed by
a relatively slow growth due to the smaller subpopulation. The
figure shows the net growth of infection in both the networks.
The initial epidemic growth is slowest when P = 0.5 or the
subpopulations are the same size. However, the later epidemic
growth is slowest when the subpopulations are very different
in size. A small value of P is more advantageous because
the small network of size PN is very slow to saturate, which
keeps the total population from saturating completely. When
there is a large subpopulation and a small subpopulation, the
large subpopulation does saturate relatively quickly but the

Fig. 3. Total number of infectives over time as a function of P

small subpopulation is much slower to saturate. This slows
down the saturation in the later stages of the epidemic.

Fig. 4 shows the effect of P on reaching the 50 percent and
95 percent infection levels. Small values of P means there
is a large subpopulation and a small subpopulation. The large
subpopulation saturates quickly, while the small subpopulation
saturates very slowly. Therefore it takes a long time for the
epidemic to reach an overall 95 percent infection level. For
larger values of P , the two subpopulations are more equal in
size. Both will then saturate at moderate rates. The time to
reach the 95 percent infection level becomes shorter.

Fig. 5 shows the time for a single subpopulation of size N
to saturate to a 95 percent level. As the subpopulation size
decreases, the time to saturate increases exponentially. This
points out that whenever possible, it is best to quarantine a
population into the smallest possible subpopulations.

The trade-offs involved in quarantine strategies are shown
in Fig. 6. If the smallest networks are quarantined first, they

Fig. 4. Effect of P on time to achieve a certain infection level



Fig. 5. Effect of N on time to achieve 95 percent infection level

will be well protected and slow to saturate. At the same time,
however, it leaves a relatively large subpopulation which will
saturate quickly. Fig. 6(a) is the best strategy if the protection
of the small quarantined networks is of paramount importance.
The alternative is to quarantine the largest networks first. The
large quarantined networks will saturate more quickly. At the
same time, a relatively smaller unquarantined subpopulation
will saturate at a moderate rate. Fig. 6(b) is the best strategy if
protection of the unquarantined subpopulation is as important
as protection of the quarantined networks.

III. QUARANTINE FOR GENERAL EPIDEMICS

The SI model is good for fast epidemics that can spread
without initial constraints. In other cases, there will be counter-
measures such as software patching and antivirus disinfecting
during a worm outbreak. Zou et al. noted that the simple
epidemic model is a close fit for the early stages of the Code
Red outbreak but does not account for network congestion or
human countermeasures in the later stages [23].

A. General Epidemics

The general epidemic or SIR (susceptible → infective
→ removed) model due to Kermack and McKendrick [10]
has been used for worm epidemics by several researchers
[11], [12], [23], [24]. For a closed population, the number
of susceptibles S(t), infectives I(t), and removed R(t) are
governed by the system of differential equations

d

dt
S = −βSI (4)

d

dt
I = βSI − γI (5)

d

dt
R = γI (6)

The SIR model is similar to the SI model except for the ad-
ditional transition of infectives to removed state. The removal
rate γ reflects human countermeasures to disinfect, patch, or
disconnect infected hosts.

Fig. 6. Illustration of trade-offs involved in quarantining strategies

Let {N1, . . . , Nm} denote the sizes of m networks, and
N = N1 + · · · + Nm is the total population. Network j has
pj = Nj/N fraction of the total population. The number of
susceptibles, infectives, and removed in network j are Sj(t),
Ij(t), and Rj(t), respectively.

We consider that a worm epidemic had a time T already
to spread without constraint before a quarantine begins. This
delay is due to the time needed to detect a new outbreak.
During this initial spread, the epidemic is spreading homoge-
neously. We assume that the epidemic started at time t = −T
and that the quarantine is activated at time t = 0. The initial
unconstrained spread has the effect of establishing an initial
number of infectives I(0) = I0. Assuming that the epidemic
originated at a single host, the total number of infectives at
time t = 0 will be

I0 =
N

1 + (N − 1)e−βNT
(7)

Since the initial spread was homogeneous, the initial con-
ditions for network j will be

Ij(0) = pjI0, Sj(0) = Nj − Ij(0), Rj(0) = 0 (8)

B. Herd Immunity

An important result for SIR epidemics is the critical thresh-
old for herd immunity. Notice that

d

dt
I = (βS − γ)I (9)

and hence, I(t) will always decrease if S(0) < γ/β. The
critical level γ/β is the initial number of susceptibles that
would be sufficient to mix with the infectives for additional
spreading. Below the threshold, I(t) will decrease to zero.
Above the threshold, the number of infectives will increase to



a maximum and then eventually approach an endemic level.
The maximum level of infectives will be [3]

Imax = S(0) + I(0) − γ

β
ln S(0) − γ

β
+

γ

β
ln

γ

β
(10)

C. Strategies for Quarantine

Consider that a population consists of m networks, and only
a given fraction of them can be quarantined. That is, we are
able to selectively deploy a given number of worm-blocking
firewalls at these networks. Each quarantined network will
contain an SIR epidemic. If the initial number of susceptibles
in a quarantined network is sufficiently small, that network
will have herd immunity meaning the epidemic will always
decrease and eventually disappear. The epidemic in network j
will be governed by

d

dt
Ij = (βSj − γ)Ij (11)

and herd immunity is attained if Sj(0) < γ/β. After substi-
tutions and rearrangement, the condition for herd immunity in
a quarantined network is

Nj <
γ

β

(
N

N − I0

)
(12)

Therefore, if we can determine the epidemic rates β and
γ and the extent of the epidemic I0 at the start of quaran-
tine, we can identify the networks smaller than critical size
which have herd immunity. A reasonable strategy is to select
these networks for quarantine because the epidemics in these
networks will steadily dwindle without increase.

If we are able to quarantine some of the remaining networks
above critical size, which should be selected? Again, we
take an inductive approach and first ask how to quarantine
a population into two subpopulations to minimize the total
epidemic. We consider a total population of size N . Suppose
we can quarantine this population into two subpopulations of
size N1 = PN and N2 = (1 − P )N . The SIR epidemics in
these two subpopulations will reach maximum levels

I1,max = N1 − γ

β
ln S1(0) − γ

β
+

γ

β
ln

γ

β
(13)

I2,max = N2 − γ

β
ln S2(0) − γ

β
+

γ

β
ln

γ

β
(14)

Putting everything in terms of P , this can be rewritten as

I1,max = PN − γ

β
ln(PN − PI0) − γ

β
+

γ

β
ln

γ

β
(15)

I2,max = (1 − P )N − γ

β
ln((1 − P )N (16)

−(1 − P )I0) − γ

β
+

γ

β
ln

γ

β
(17)

If we minimize the total maximum Imax = I1,max + I2,max

with respect to P , we find that the optimal is P = 1/2. In
other words, the subpopulation should be divided into equal
subpopulations to minimize the total epidemic.

These results lead to an optimal quarantine strategy for
quarantining general epidemics:

1) First select the networks below the critical size for herd
immunity to quarantine

2) If more networks can be quarantined, selectively deploy
firewalls to divide the remaining subpopulation as evenly
as possible

IV. CONCLUSIONS

In this paper, we have examined the effectiveness of partial
quarantines for simple epidemics and proposed quarantine
strategies for simple and general epidemics. We have found
that the size of quarantined networks has a great effect on
the time for an outbreak to saturate the population. As the
size decreases, the time to saturate increases exponentially.
As a consequence, it is best to quarantine a population into
the smallest possible subpopulations.

The optimal quarantine strategy for simple epidemics de-
pends on which subpopulations are most important to protect.
Quarantining the largest networks first leaves a relatively small
unquarantined subpopulation. This is the best strategy when
the unquarantined subpopulation is as important to protect as
the quarantined networks. Quarantining the smallest networks
is the best strategy if protection of the small quarantined
networks is most important.

For general epidemics, we derived a critical threshold for
quarantined networks to have herd immunity. It is advanta-
geous to quarantine the networks smaller than the critical
threshold because epidemics in these networks will dwindle
without increase. We have shown that, if additional quar-
antining is possible, the remaining unquarantined population
should be divided as evenly as possible, in order to minimize
the total epidemic.
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